HITACHI

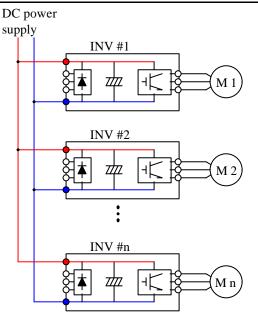
Application Note: Powering Inverters from a DC Supply

Please refer also to the Inverter Instruction Manual

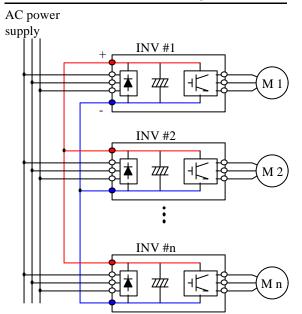
AN091802-1

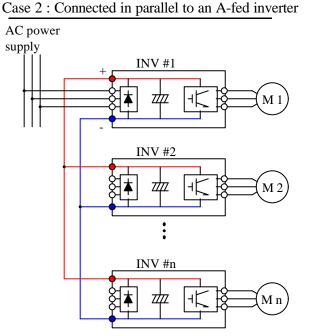
Hitachi America, Ltd.

© 2002 Hitachi America, Ltd.

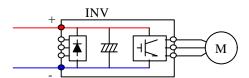

Powering Inverters from DC

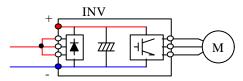
It is possible to power inverters from a DC Power source, or to connect the DC Bus of multiple inverters together to achieve energy savings, since inverters in power driving mode can use power from those that are in regeneration mode.


[1] Connection method


There are several ways for DC bus connection of the inverters. (Examples of 3-phase 200V or 400V class inverter.)

Case 1 : Connected in parallel to a common DC bus





DC supply connection methods

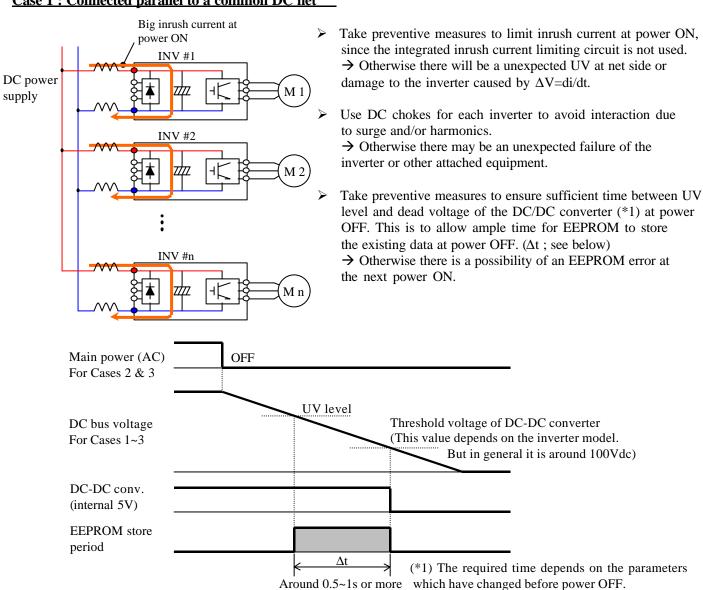
• Connecting to + and - terminal

Connecting to AC inputs and - terminal

> Advantage and disadvantages of each connection method.

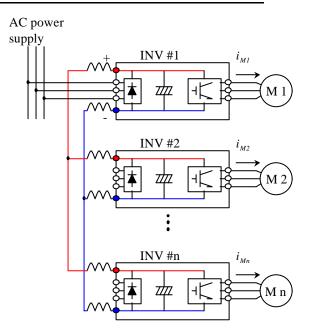
Item	Contents		Advantage		Disadvantage
0	Connecting to + & - terminal	•	No concern for the rectifier bridge diodes.	•	There will be no inrush current limiting.
0	Connecting to AC inputs and - terminal	•	Integrated inrush current limiting circuit is used.	•	Rectifier bridge diodes of the main inverter may need to be up-sized.

[2] DC voltage to be supplied

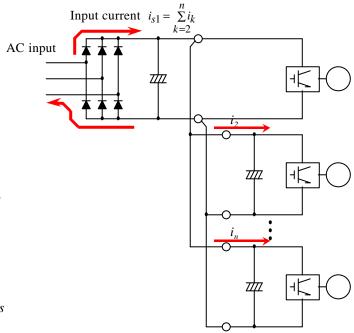

Model name		UV level	BRD ON level	OV level (regen.)	OV level (source)
J100	200V class	140Vac ~ 160Vac	(V-SET) +137.5V	390 Vdc ± 15 Vdc	
	400V class	280Vac ~ 320Vac	(V-SET) +275V	780 Vdc \pm 30Vdc	
J300	200V class	140Vac ~ 160Vac	(AVR set) +138V	369Vdc ~ 404Vdc	
	400V class	280Vac ~ 320Vac	(AVR set) +276V	756Vdc ~ 827Vdc	
L100	200V class	190 Vdc \pm 10 Vdc		395 Vdc ± 20 Vdc	Aprx. 365Vdc for 100s
	400V class	395 Vdc ± 20 Vdc	-	790 Vdc \pm 40Vdc	Aprx. 730Vdc for 100s
SJ100	200V class	Same as L100	370Vdc +4%,-3%	Same as L100	Same as L100
	400V class	Same as L100	740Vdc +4%,-3%	Same as L100	
L300P	200V class	200 Vdc ± 10 Vdc		395 Vdc ± 10 Vdc	Aprx. 380Vdc for 60s
	400V class	400 Vdc ± 20 Vdc	-	790 Vdc ± 20 Vdc	Aprx. 760Vdc for 60s
SJ300	200V class 400V class	Same as L300P	Adjustable by [b096]	Same as L300P	Same as L300P

Supplied DC voltage should be between the UV voltage and the OV voltage (or BRD ON level) of the inverter.

> If it is higher, inverter may trip with OV or BRD error.


➢ If it is lower, inverter may trip with UV.

[3] Cautions


Case 1 : Connected parallel to a common DC net

Case 2 : DC Bus connected n parallel to a single AC-fed inverter

- Pay attention to the selection of the main inverter (#1) because all the input current flows through the rectifier bridge of this inverter. (*2)
- Need sufficient time for EEPROM to store the data. (Refer to Case 1)
- ➢ Use DC choke. (Refer to Case 1)

<Selection of the main inverter kW>

(*2) Capacity of the main inverter

Rated current of the main inverter should be higher than;

- Total rated current of the inverters
- and Possible highest total motor current

[Example of 4 inverters in parallel]

- ➤ INV#1~#4=SJ300-040HFx (8.6A rated)
- $i_{M1(max)} = i_{M2(max)} = i_{M3(max)} = i_{M4(max)} = 9.0Arms$

In this case, the total motor current <u>under the possible worst case</u> is higher than that of the inverters. Total inverter rated current $= \dot{i}_1 + \dot{i}_2 + \dot{i}_3 + \dot{i}_4 = 8.6 * 4 = 32.2$ Arms Total motor current under possible worst case $= \dot{i}_{M1(max)} + \dot{i}_{M2(max)} + \dot{i}_{M4(max)} = 36$ Arms

→ Main inverter must therefore be SJ300-185HFx (38A) or larger. SJ300-220HFx is suggested to provide additional safety margin.