
APPLICATION NOTE
THIS INFORMATION PROVIDED BY AUTOMATIONDIRECT.COM TECHNICAL
SUPPORT IS PROVIDED "AS IS" WITHOUT A GUARANTEE OF ANY KIND.
These documents are provided by our technical support department to assist others. We do
not guarantee that the data is suitable for your particular application, nor do we assume any
responsibility for them in your application.

Product Family: DirectLogic PLCs Number: AN-MISC-029

Subject: How to write DirectNET
protocol

Date Issued: 09/04/08

Revision: Original

This document explains the particulars of the DirectNET protocol such as
message content and message flow. It assumes that the user has working
knowledge and experience in writing communication protocols.

This document does not address the particulars of any code language or
platform. It is the user’s responsibility to generate the necessary code for their
system when developing an application using this protocol.

Control Characters used in DirectNET
• ENQ (0x05) Enquiry to start communications
• ACK (0x06) Acknowledge (data received and no errors
• NAK (0x15) Negative Acknowledge (data received but

there were errors)
• SOH (0x01) Start of Header
• ETB (0x17) End of Transmission Block (intermediate

block)
• STX (0x02) Start of Text (beginning of data block)
• ETX (0x03) End of Text (end of last data block)
• EOT (0x04) End of Transmission (transaction complete)

NOTE: All control characters are in Hex format

These are standard ASCII Control characters and are not
unique to the DirectNET protocol.

Components of DirectNET

• Enquiry
• Header
• Data Packet
• Ack (Acknowledge)
• EOT (End of Transmission)

Components of DirectNET
Enquiry:

4E 21 05
Static Value. Never
Changes. Always use
0x4E for this field.

Static Value. Never
Changes. Always use
0x05 for this field.

Address Field with 0x20 offset. Simple
Conversion: Take the decimal slave value.
(NOTE: DCM address already in hex format).
Convert to Hex, add 0x20 and put that number in
the field. Example: Decimal 60= Hex 0x3C.
Add 20 and Slave field should be 0x5C.

Point to
Remember:

Enquiry is always
the same

regardless of Hex
or ASCII mode

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

SOH (Start of
Header): Never
Changes. Always use
0x01 for this field.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3931 3031 17 30 38
08

Address Field without offset. Simple
Conversion: Take the decimal slave value.
Convert to Hex. (NOTE: DCM address
already in hex format) Example: Decimal 04=
Hex 0x04. Look at ASCII Table: 0=30 4=34.
Enter 3034 into the slave address field.
Another example: Decimal 60= Hex 0x3C.
3=33 C=43. Enter 3343 into slave address
field.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

Read or Write Request Field: Enter 30 if
Read or 38 if write.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

Data Type Field: Refer to Appendixes D-F for
the appropriate PLC mapping. Example:
DL205 V-memory is 31.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3931 3031 17 30 38
08

Starting Address Fields: Refer to Appendixes
D-F for the appropriate 4 digit PLC Reference
address to start read or writing at. The value
that is entered into these fields is a octal to
hex conversion plus an offset of 1. For
example: V40400=octal 40400 -> 0x4100 + 1
= 4101 Reference address. You then convert
this value with the ASCII table: 4=34 1=31
0=30 1=31 to get 3431 3031.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

Number of Complete Data Blocks: Anytime you need more than 256 bytes
of data, you would use this field. If you place a value of 1 into this field,
you will get 256 bytes of data. If you place a value of 2 into this field, you
will get 512 bytes of data (2 Data Blocks). Everytime you increment this
value, you get 256 more bytes of data. Once you determine how many
complete data blocks you want, you convert the number to hex and then
use the ASCII Table to convert to the value to enter into the field.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

Partial Data Blocks: You use this field anytime
you want less than a complete block of data (<256
bytes). You do the same conversion as before.
For example, if you want 72 V memory locations
(144 bytes), you convert decimal 144= Hex 0x90.
Then do the ASCII table look up. 9=39 0=30. You
enter 3930 into the partial data block field.

Remember in ASCII mode, you have to request 4
bytes per desired V memory location. So to get
50 V memory locations (200 bytes), you convert
200= Hex 0xC8. Then do the ASCII table look up.
C=43 8=38. You enter 4348 into the partial data
block field.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

Master ID: This field holds the value of the
Master ID number. This will almost always be
either 3030 for 0 or 3031 for 1. If you wanted a
different value, you do the same conversions
as before.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

End of Transmission: This field always holds
the value of 0x17 since there is only one
header for any given transaction in DirectNET.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Components of DirectNET
Header:

01 3034 3130 3431 3031 3031 3930 3031 17 30 38
08

LRC Checksum: This field holds the
checksum. The value in the upper field is the
DirectNET Hex representation and the value in
the lower field is the DirectNET ASCII
representation. Remember that only bytes 2 –
15 are calculated in the LRC (represented in
red here). Refer to the next slide for a simple
chart method of calculating the LRC.

Byte: 1 2+3 4 5 6+7 8+9 10+11 12+13 14+15 16 17 (+18)

Point to remember: The
header checksum is the first

place that the format
actually changes between

Hex and ASCII mode

LRC Calculation:
Using the values from the last
slide, you can see that it is a very
simple method of XORing
(exclusive ORing) through bytes
2 – 15 of the Header. This chart
shows a simple method of
counting all the 1’s and if they
are even, the result is a 0, if they
are odd, the result is a 1.

Components of DirectNET
Data Packet:

02 Lsb Msb … Lsb Msb 17
ASCII LRC
Hex LRC

Byte: 1 2 to 256 bytes n n + 1

03

Start of Text (STX):
Static Value. Never
Changes. Always use
0x02 for this field.

Components of DirectNET
Data Packet:

02 Lsb Msb … Lsb Msb 17
ASCII LRC
Hex LRC

Byte: 1 2 to 256 bytes n n + 1

03

Data Field: This field holds the actual data that is being written or read. Notice that the
byte order is backwards from what how you would view it in data view (hex mode). This is
another field that would differ in format between Hex and ASCII mode.

Example (Hex Mode): If you had placed a value of “1234” into a V memory location in
Data view using the standard “BCD/Hex” format, you would see 34 12 in the data field.

Example (ASCII Mode): Same value as above entered into Data View in BCD/Hex format
would show as 33 34 31 32 in the data field. NOTE: It takes twice as many bytes in ASCII
Mode as opposed to Hex Mode. So…Remember that you need to request twice as many
bytes for the same amount of data if using ASCII Mode.

Components of DirectNET
Data Packet:

02 Lsb Msb … Lsb Msb 17
ASCII LRC
Hex LRC

Byte: 1 2 to 256 bytes n n + 1

03

End of Text/End of Block: If you
are reading or writing multiple
blocks of data, this field should
contain a 0x17(ETB) for all data
blocks except for the last data
block. The last data block should
contain a 0x03(ETX).

Components of DirectNET
Data Packet:

02 Lsb Msb … Lsb Msb 17
ASCII LRC
Hex LRC

Byte: 1 2 to 256 bytes n n + 1

03

LRC Checksum: This field
contains the data packet LRC.
Same calculation rules apply here.
Only the data bytes are calculated
in the LRC for the Data Packet
(illustrated in Red).

Components of DirectNET
Acknowledge:

06

Acknowledge: This is simply a hex 0x06. This is
used to acknowledge different components of the
transaction. This will be explained later in the
sequence of events description.

Components of DirectNET
End of Transmission:

04

End of Transmission: This is simply an hex 0x04.
This signifies the end of transmission on that
transaction from the sending device.

Point to remember: An
EOT given from either

the master or slave will
terminate the present

communications
transaction and the

master will have to begin
anew with the Enquiry.

Sequence of Events:

Read:

- Master sends Enquiry

- Targeted Slave sends ACK

- Master sends Header

- Targeted Slave sends requested Data packet

- Master sends ACK

- If Multiple Data packets were requested, slave
sends next data packet. If not, Slave sends EOT.

- Master sends EOT

Sequence of Events:

Write:

- Master sends Enquiry

- Targeted Slave sends ACK

- Master sends Header

- Targeted Slave sends ACK

- Master sends Data Packet

- Slave Responds with ACK

- Once the Master has sent all Data Packets,
it sends an EOT

Comparison of a 2 byte read in both Hex and ASCII mode

Master Slave Master Slave

Even though we are only
asking for 2 bytes of actual
data, we have to load the
data block size with 4 bytes.

LRC is now 2
bytes instead
of 1

The data
doubled in
size and the
format is
different

Note the
carriage
return

Note the
carriage
return

Hex Mode ASCII Mode

Master Slave

Even though we are only
writing 2 bytes of actual
data, we have to load the
data block size with 4 bytes.

LRC is now 2
bytes instead
of 1

The data
doubled in
size and the
format is
different

Note the
carriage
return

Note the
carriage
return

ASCII Mode
Master Slave

Hex Mode

Comparison of a 2 byte write in both Hex and ASCII mode

Master Slave
Hex Mode

Example of how this would look on a comm analyzer

Master Slave
ASCII Mode

Example of how this would look on a comm analyzer

General Questions:
• Why use ASCII Mode?

– No reason to use anymore. When DirectNET was originally
created, the editors that were used to write code did not have the
support and commands that are used today to detect the
beginnings and ends of data packets as well as the conversion
commands.

• Why use Hex Mode?
– If reading or writing a small amount of data, there is no real

advantage to using Hex Mode. If you are reading or writing a
large amount of data, Hex Mode transfers half as many bytes for
the same amount of data so Hex Mode will have better
throughput.

• Why is there an offset of 20 in the Enquiry?
– So that the address does not get interpreted as a control

character. An offset of 20 brings the data above the control
character range.

General Questions:
• Why am I getting an 04(EOT) from the slave

before my communications are complete?
– This is an indication of a Timeout. The Slave

did not receive the expected data in the time
allowed for this transaction so it sent an EOT
to terminate this communications transaction.

• Why am I getting an 15(NAK) from the slave?
– The data command sent to the PLC was

formatted incorrectly or the LRC was
incorrect.

