
Binary
Numbering System

 Computers including PLC’s use the Base 2 numbering system, which is called
Binary or Boolean. There are only two valid digits in Base 2, zero and one, or off and on
respectively. You would think that it would be hard to have a numbering system built on
Base 2 with only two possible values, but the secret is by encoding using several digits.

 Each digit in the Base 2 system when referenced by a computer is called a bit.
When four bits are grouped together, they form what is known as a nibble. Eight bits or
two nibbles would be a byte. Sixteen bits or two bytes would be a word (Table 1).
Thirty-two bits or two words is a double word.

Word
Byte Byte

Nibble Nibble Nibble Nibble
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1

 Binary is not “natural” for us to use since we grow up using the base 10 system.
Base 10 uses the numbers 0-9, as we are all well aware. From now on, the different
Bases will be shown as a subscripted number following the number. Example; 10
decimal would be 1010.

Table 2 shows how base 2 numbers relate to their decimal equivalents.

 A nibble of 10012 would be equal to a decimal number 9 (1*23 + 1*20 or 810 + 110.)
A byte of 110101012 would be equal to 213 (1*27 + 1*2 6 +1*24 + 1*22 +1*20 or 12810 +
6410 + 1610 + 410 + 110.)

 Binary/Decimal

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20
Decimal
Bit Value 32

67
8

16
38

4

81
92

40
96

20
48

10
24

51
2

25
6

12
8

64

32

16

8 4 2 1

Max Value 6553510

Table 2

Hexadecimal
Numbering System

 As you have probably noticed, the Binary numbering system is not very easy to
interpret. For a few bits, it is easy, but larger numbers tend to take up a lot of room
writing them down and are very hard to keep track of what the bit position is while doing
the conversion. That is where using an alternate numbering system comes in. One of the
first numbering systems to be used was Hexadecimal or Hex for short.

 Hex is a numbering system that uses Base 16. The numbers 0-910 are represented
normally, but the numbers 1010 through 1510 are represented by the letters A through F
respectively(Table 3). This works well with the Binary system as each nibble (11112) is
equal to 1510. Therefore, for a sixteen-bit word you could have a possible Hex value of
FFFF16. See Table 4 for an example.

Decimal Hex Decimal Hex
0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

Table 3

 Hexadecimal

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 163 162 161 160
Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1
Max Value F F F F

Table 4

 Hex to decimal conversions work in much the same way as Binary. C216 would
be equal to 19410 (12*161 + 2*160 or 192 + 2.) A6D416 would be equal to 4270810 (10*163
+ 6*162 + 13*161 + 4*160 or 4096010 + 153610 + 20810 + 410.)

Octal
Numbering System

 The Octal numbering system is similar to the Hexadecimal numbering system in the
interpretation of the bits (Table 5). This big difference is that the maximum value for Octal is 7
since it is Base 8.

 Octal

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 85 84 83 82 81 80

Bit Value 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1
Max Value 1 7 7 7 7 7

Table 5

 You should be getting the hang of how this works by now. 638 is equal to 5110
(6*81 + 3*80 or 4810 + 310.)

BCD
Numbering System

 Again, the BCD system is like the Octal and Hexadecimal numbering systems. It
also relies on bit-coded data(Table 6). It is Base 10, or Decimal, but it is Binary Coded
Decimal. There is a big difference in BCD and Binary, as we will see in a bit.

 BCD

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 103 102 101 100

Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Max Value 9 9 9 9

Table 6

The somewhat good part about BCD is that it reads like a Decimal

number, IE 867 BCD would mean 867 Decimal. No conversion needed.
However, as with all things related to computers there are snags to worry about.

Real (Floating Point)
 Numbering System

 The terms Real and floating-point both describe IEEE-754 floating-point numbers
numbers. Most plcs’ use the 32-bit format for floating point (or Real) numbers (Table 7).

 The formula and layout of the number is as follows.

Number=1.M * 2(E-127)

Number: The number to be converted to floating-point
M: Mantissa
E: Exponent

 Real (Floating-Point 32)

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
 Sign Exponent Mantissa

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Mantissa

Table 7

 Calculating the Real number format is very complex. For that very reason, we
will not attempt it here. If you are interested in the conversion process there are
numerous papers on the internet that go into specific detail on how to do it.

 You may notice that there is not a minimum or maximum value given for the Real
number format. The range is from negative infinity to positive infinity. Having said this,
and having noticed that there are only thirty-two bits possible to create every number
from negative infinity to positive infinity, it is easy to surmise that not all numbers can be
represented. This is in fact the case. There is an inherent amount of error with the Real
format. Again, there are numerous documents on the internet, which can explain this
phenomenon better than this paper could.

 I’m sure that you are wondering how much error can there be and if there is a lot
of error why is this format used? To try and give a short answer, it depends on the
application. For most plc applications unless you are trying to be 100% accurate with
absolutely no possible error then the Real format will not pose many problems. So most
of the time the inherent error can be ignored, but it is important to know that it exists.

BCD/Binary/Decimal/Hex/Octal
What is the difference?

There is sometimes confusion about the differences between the data types used
in a plc. The plcs’ native data format is BCD while the I/O numbering system is Octal.
Other numbering systems used in plcs’ are binary and real. Although data is stored in the
same manner (0’s and 1’s), there are differences in the way that the plc interprets it.

While all of the formats rely on the base two numbering system and bit coded

data, the format of the data is dissimilar. Table 8 below shows the bit patterns and values
for Binary, Hexadecimal, BCD, and Octal. We will cover the Real numbering system
later.

 Binary/Decimal

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Value

32
67

8

16
38

4

81
92

40
96

20
48

10
24

51
2

25
6

12
8

64

32

16

8 4 2 1

Max Value 65535

 Hexadecimal

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Max Value F F F F

 BCD

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Max Value 9 9 9 9

 Octal

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit Value 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1

Max Value 1 7 7 7 7 7

 Real

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
 Sign Exponent Mantissa

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Mantissa

Table 8

Data Type Mismatch

Data type mismatching is a common problem when using an operator interface.
Diagnosing it can be a challenge until you realize the symptoms. Since the plc uses BCD
as the native format, many people tend to think it is interchangeable with Binary
(unsigned integer) format. This is true to some extent but is not the case. Table 9 shows
how BCD and Binary numbers differ.

Decimal BCD Binary
0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001
10 0001 0000 0000 1010
11 0001 0001 0000 1011

Table 9

 As the table shows, BCD and Binary share the same bit pattern up until you get to
the decimal number 10, so there are similarities. Once you get past 10 things change
drastically! The BCD bit pattern for the decimal 10 is actually equal to a value of 16 in
Binary causing you to jump six digits by looking at it with the BCD data type! With
larger numbers, the error multiplies. The Binary values from 10 to 15 decimal are
actually invalid for the BCD data type.

 Let’s look at a larger number shown in Table 10.

Decimal BCD Binary
4096 0100 0000 1001 0110 0001 0000 0000 0000

Table 10

 As a Decimal number, the value is 4096. If we interpret the BCD number as
Binary, the Decimal number would be 16534. Similarly, if we interpret the Binary
number as BCD, the Decimal number would be 1000. This leaves quite a bit of
difference between the two numbers.

As you can see from Table 8, The BCD and Hexadecimal formats are similar,
although the maximum number for each grouping is different (9 for BCD, F for
Hexadecimal.) This allows both formats to use the same display method. The
unfortunate side effect of this is that unless the data type is documented, you really do not
know what the data type is unless it contains the letters A-F.

Sign vs. Unsigned Integers

 So far, we have dealt with unsigned data types only. Now we will deal with
negative numbers and signed data types. The BCD data type cannot be used for signed
data types.

 In order to signify that a number is negative or positive we must assign a bit to it.
Usually this is the MSB or most significant bit (Table 11). For a 16-bit number this is bit
15. This means that for 16-bit numbers we have a range of -32767 to 32767.

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 MSB LSB

Table 11

Of course, it cannot be as simple as that. We have two ways of encoding a

negative number, two’s complement and Magnitude Plus sign. The two methods are not
compatible.

 As long as the value is positive or bit 15 is not set then the rules work the same as
before. If bit 15 is set then we must know which encoding scheme was used.

 Magnitude plus sign is the easiest to decode. Basically, it is the same format as
the positive number with bit 15 set (Table 12).

Magnitude Plus Sign
Decimal Binary
100 0000 0000 0110 0100
-100 1000 0000 0110 0100

Table 12

 Two’s Complement is slightly more difficult. The formula is to invert the binary
value and add one (Table 13).

Two’s Complement
Decimal Binary
100 0000 0000 0110 0100
-100 1111 1111 1001 1100

Table 13

AutomationDirect.com Products
And

Data Types

DirectLogic PLC’s

 The DirectLogic plc family uses the Octal numbering system for I/O modules.
All of the internal V-Memory is stored in BCD format unless specifically changed by the
programmer. This means that all math should be done using BCD math functions. You
have the option of using Binary or Real numbers as well as Double-Word BCD values in
some of the plc models. To change data types you must use a function box. To change
from BCD to Binary, you would use a BIN box. To change from BCD to Real you
would use a BIN and then a BTOR box. You cannot add a BCD or Binary number to a
Real number, or a BCD number to a Binary number and get a correct result. The data
types must match. An analogy would be trying to make orange juice out of lemons, they
are both citrus fruits, but the result just isn’t going to taste right.

 There are a couple of points to be aware of as far as all V-Memory being BCD by
default. Analog cards can be setup to give Binary results as well as BCD, so you have to
know how the card is being used. PID is another place where everything is not BCD. In
fact, nearly all of the PID parameters are stored in the plc as Binary numbers.

 An interesting point is that the PID algorithm uses Magnitude Plus Sign for
negative binary numbers, whereas the regular math functions use Two’s Complement.
This is worth noting as it can really cause confusion while debugging a PID loop.

 The last point to be aware of is in data view mode. As strange as it may sound
Binary, Hex, and Decimal are all stored the same way in the plc and are all called Binary
format. The only difference is when you look at them in data view mode. Be sure you
select the proper format from the drop down box. In addition, you will notice that BCD
is called BCD/Hex. As you may remember from a few pages ago, they are actually the
same as long as you do not have the letters A through F, so they share a display format
even though they are very different values. This is where good documentation of the data
type stored in memory is crucial.

EZ-Touch/EZ-Text

 In the EZ-Touch and EZ-Text, the 16-bit BCD format is listed as BCD_INT_16.
Binary format is either Unsigned_Int_16 or Signed_Int_16 depending on whether or not
the value can be negative. Real number format is Floating_Point_32.

